首页> 外文OA文献 >An Effective Feature Selection Method Based on Pair-Wise Feature Proximity for High Dimensional Low Sample Size Data
【2h】

An Effective Feature Selection Method Based on Pair-Wise Feature Proximity for High Dimensional Low Sample Size Data

机译:一种基于对偶特征的有效特征选择方法   接近高维低样本数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Feature selection has been studied widely in the literature. However, theefficacy of the selection criteria for low sample size applications isneglected in most cases. Most of the existing feature selection criteria arebased on the sample similarity. However, the distance measures becomeinsignificant for high dimensional low sample size (HDLSS) data. Moreover, thevariance of a feature with a few samples is pointless unless it represents thedata distribution efficiently. Instead of looking at the samples in groups, weevaluate their efficiency based on pairwise fashion. In our investigation, wenoticed that considering a pair of samples at a time and selecting the featuresthat bring them closer or put them far away is a better choice for featureselection. Experimental results on benchmark data sets demonstrate theeffectiveness of the proposed method with low sample size, which outperformsmany other state-of-the-art feature selection methods.
机译:特征选择已在文献中得到广泛研究。然而,在大多数情况下,低样本量应用选择标准的有效性被忽略。现有的大多数特征选择标准都基于样本相似度。但是,距离度量对于高维低样本大小(HDLSS)数据而言意义不大。而且,只有少量样本的特征方差是没有意义的,除非它能有效地表示数据分布。而不是按组查看样本,而是根据成对方式评估样本的效率。在我们的调查中,Wentotic认为一次考虑一对样本并选择使它们靠近或远离的特征是进行特征选择的更好选择。在基准数据集上的实验结果证明了该方法在低样本量下的有效性,该方法优于许多其他最新特征选择方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号